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Damping and eigenfrequencies of surface capillary-gravity waves greatly depend on 
the boundary conditions. To the best of our knowledge, so far no direct measurement 
has been made of the dynamic behaviour of the contact angle a t  the three-phase 
interface (fluid-vapour-solid walls) in the presence of surface oscillation. Therefore, 
theoretical models of surface gravity-capillary waves involve ad hoc phenom- 
enological assumptions as far as the behaviour of the contact angle is concerned. In  this 
paper we report a systematic experimental investigation of the static and dynamic 
properties of surface waves in a cylindrical container where the free surface makes a 
static contact angle 8, = 62” with the vertical walls. The actual boundary condition 
relating the contact angle to the velocity of the contact line is obtained using a new 
stroboscopic optical method. The experimental results are compared with the 
theoretical expressions to be found in the literature. Two different regimes are 
observed: (i) a low-amplitude regime, where the contact line always remains at  rest 
and the contact angle oscillates during the oscillation of the free surface; (ii) a higher- 
amplitude regime, where the contact line slides on the vertical walls. The profile, the 
eigenfrequency and the damping rate of the first non-axisymmetric mode of the 
surface gravity waves are investigated. The eigenfrequency and damping rate in 
regime (i) are in satisfactory agreement with the predictions of the Graham-Eagle 
theory (1983) of pinned-end edge conditions. The eigenfrequency and damping rate 
in regime (ii) show a strongly nonlinear dependence on the oscillation amplitude of 
the free surface. All the experimental results concerning regime (ii) can be explained 
in terms of the Hocking (1987a) and Miles (1967, 1991) models of capillary damping 
by introducing an ‘effective’ capillary coefficient heff. This coefficient is directly 
obtained for the first time in our experiment from dynamic measurements on the 
contact line. A satisfactory agreement is found to exist between theory and 
experiment. 

1. Introduction 
The methods for calculating the eigenfrequencies and damping coefficients of 

standing capillary-gravity waves in a closed basin for a low-viscosity fluid are well 
known (see, for instance, Lamb 1932, chapter 9;  Case 8.1 Parkinson 1957). Standard 
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theoretical approaches assume that the free surface intersects the vertical walls 
orthogonally and the contact line a t  the three-phase interface (solid, liquid and air) 
can freely slip (free-end edge condition) (Ursell 1952; Case & Parkinson 1957). 

Experiments have been performed to measure the damping rate of gravity- 
capillary waves (Case & Parkinson 1957; Keulegan 1959; Van Dorn 1966; Benjamin 
& Ursell 1954). In  most of these experiments the damping rate is found to be higher 
than the theoretical value predicted for free-end edge conditions. Either con- 
tamination of the free surface by a thin impurity layer or effects of meniscus at the 
vertical walls were proposed to explain discrepancies between theory and experiment 
(Miles 1967). In particular, measurements of damping rates of progressive wave using 
controlled films a t  the free surface for wetting boundary conditions showed that 
contamination of the free surface can cause a strong increase in the damping rate 
(Davies 6 Vose 1965). Furthermore Case & Parkinson showed that the damping rate 
approaches the free-end value after careful polishing of the internal walls of the 
container. In  order to explain certain experimental results, Benjamin & Scott (1979) 
and Graham-Eagle (1983, 1984) make the assumption that, in some cases, the 
contact line can remain a t  rest even in the presence of oscillation of the free surface. 
This new boundary condition is known as the pinned-end edge condition. More 
recently Hocking ( 1 9 8 7 ~ )  and Miles (1967, 1991) proposed a new and more general 
boundary condition where the macroscopic contact angle is assumed to be a linear 
function of the velocity of the contact line. The free-end and the pinned-end edge 
conditions represent two different limiting cases for this new boundary condition. 
Hocking showed that all previous experimental results could be explained by a 
proper choice of the capillary coefficient h which characterizes the boundary 
condition. However, the dynamic behaviour of the contact line was not investigated 
in previous experiments and, thus, a quantitative comparison between experimental 
results and theoretical modes is not possible. 

This brief discussion shows that a complete experimental investigation of the 
dynamic properties of surface waves requires a careful analysis of the dynamic 
properties of the contact line. In  this paper we report new experimental results 
concerning the low-amplitude regimes of surface capillary-gravity waves for a low- 
viscosity fluid (water) in an oscillating cylindrical container. The shape, damping 
rate and eigenfrequency of the fundamental non-axisymmetric surface mode are 
investigated in detail by means of an optical apparatus. The dynamic behaviour of 
the contact angle and contact line is investigated during surface oscillation in order 
to  establish the boundary conditions which best describe the actual behaviour of the 
system. This measurement allows us to closely correlate the dynamic properties of 
surface waves with those of the meniscus and, for the first time, makes direct 
comparison between theory and experiment possible. 

In  a previous paper (Cocciaro, Faetti &, Kobili 1991) we investigated the behaviour 
of surface waves when the fluid (octane or water) wets the vertical walls (0, = 0). In  
this case the main behaviour of the system was found to be close to the predictions 
of the free-end theory of surface waves although certain small deviations from the 
theory were observed. 

In  the present experiment we investigate capillary-gravity waves in the case of a 
fluid (water) which makes a macroscopic static contact angle of Bc = 62' with the 
vertical walls of a cylindrical Plexiglas container. The experimental behaviour of 
surface waves with these boundary conditions appears to  be completely different as 
compared to the previous case (0, = 0). 

In order to understand this behaviour, we performed a direct measurement of the 
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contact angle and of the position of the contact line during the oscillation of the free 
surface. This measurement allowed us to obtain the first direct measurement of the 
Hocking capillary coefficient A. Depending on the maximum displacement A of the 
free surface, two different regimes were found : a small oscillation amplitudes regime 
( A  < A C ) ,  where the contact line remains a t  rest and the macroscopic contact angle 
oscillates around its static value. The damping of the first non-axisymmetric surface 
mode is characterized by a small constant damping rate, whilst the eigenfrequency is 
almost 200 mHz higher than the free-end theoretical value ( z 3 Hz). This regime can 
be explained in terms of the pinned-end edge condition; (ii) a higher-amplitude 
regime (A > A " ) ,  where the contact line slides on the walls. I n  this regime the 
damping coefficient greatly increases with the oscillation amplitude until it  reaches 
a maximum value and, then, decreases (nonlinear damping). The maximum value of 
the damping rate is more than ten times greater than that measured in the case of 
regime (i). The oscillation eigenfrequency tends to approach the value predicted by 
the free-end theory as the oscillation amplitude increases. Our experimental results 
are in satisfactory quantitative agreement with the predictions of a theoretical model 
based on the Miles (1967, 1991) and Hocking (1987a, b )  boundary conditions. To the 
best of our knowledge this is the first direct experimental observation of the regime 
of capillary nonlinear damping which was predicted by Miles (1967). Furthermore 
our experimental results are the first measurements of the behaviour of the contact 
angle in the presence of the oscillation of the free surface (see Miles 1990; Miles & 
Henderson 1990). 

2. Theoretical models of capillary-gravity waves 
2.1 Models of free-end and pinned-end edge conditions 

The oscillation of the free surface for the first non-axisymmetric longitudinal mode 
of an inviscid fluid with free-end edge conditions can be written as (Ursell1952 ; Case 

where 1.8412 k,=---; 

(2 . la )  

(2.1.b) 

where r and 0 are planar polar coordinates (6' is the angle with a horizontal x-axis), 
J, is the Bessel function of integer order n = 1, a is the radius of the cylindrical tank 
and ql( t )  is an oscillating function of time with an angular frequency w1 given by: 

wl= glc, 1+-k: tanhk,h , [ (  P 3  I 
where h is the depth of the fluid, g is the acceleration due to gravity, T is the surface 
tension and p is the mass density. 

For a low-viscosity fluid with free-end boundary conditions, (2.1 a )  remains 
substantially correct except in a very thin viscous boundary layer near the interfaces 
of the fluid. Viscosity has two main effects on fluid motion: it produces a damping 
of free surface waves and a small change in their eigenfrequencies. Here we define 
damping rate y as the coefficient which occurs in the expression of the decay of 
surface oscillations : ~ ( t )  = r0 exp ( - ny t ) .  At the first order in the small dimensionless 
parameter : 
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the viscous damping coefficient yw for the first non-axisymmetric mode is determined 
by dissipation near the walls and is given by (see, for instance, Case & Parkinson 
1957) 

yw = 47c [0.898 + 2 (1 -3 cosech (?)I, 
whilst the angular eigenfrequency is given by (Mei & Liu 1973): 

wl= gk, l+--k? tanhk,h -nyw, [ ( P 3  I 
where v, is the kinematic viscosity of water. 

All previous results were deduced by assuming that surface gravity waves must 
obey free-end edge conditions. However, conventional boundary conditions (free- 
end) may not correspond to the actual ones. In  particular, in most experiments, the 
contact angle 0, between the fluid-air interface and the vertical walls may not be 90” 
and, thus, a meniscus occurs at the contact line. Furthermore certain experiments 
(Dussan, V. 1979) seem to indicate that the contact line may also remain at  rest in 
the presence of a fluid motion (pinned-end edge condition). It has been shown that 
this new boundary condition ( ~ ( a )  = 0 at  the vertical walls) suitably describes the 
edge constraint for a rim-full container (Benjamin & Scott 1979 ; Graham-Eagle 
1983, 1984; Douady 1988, 1989). 

Benjamin & Scott conjecture that the edge constraint ?(a) = 0 may hold good for 
a container that is not rim-full. However, there is a large body of experimental 
evidence (see, for instance, Ablett 1923; Dussan, V. 1979; Dussan V., Ram6 & Garaff 
1991) indicating that the behaviour of the contact line is much more complex. 
According to the Young-Laplace equation, the macroscopic contact angle should be 
fixed and equal to 0, in static conditions. However, experiments indicate that a range 
of possible static angles, centred on the Poung-Laplace angle, may exist (capillary 
hysteresis). This static range is exceeded when the contact line moves. 

2.2 Theories of linear capillary damping 
In  recent papers, Hocking (1987a, b )  has proposed a new phenomenological linear 
boundary condition which might partially simulate the complex behaviour of a real 
fluid-solid interface. To make theoretical analysis possible, Hocking makes the 
simplifying assumptions that the static contact angle is 90’ (flat unperturbed free 
surface), that the hysteresis of the contact angle is not present and the dynamic 
contact angle is a linear function of the velocity of the contact line. The proposed 
‘wetting ’ boundary condition is 1 

where ~ ( a ,  0, t )  is the displacement of the free surface at  the vertical wall of the 
cylindrical basin ( r  = a )  and a t  time t ,  n is the inwardly directed normal to the 
vertical wall and A’ is a phenomenological capillary coefficient. Hocking implicitly 
assumes A’ is a real number. The free-end and the pinned-end edge conditions can be 
obtained as borderline cases for A’ = 00 and A‘ = 0, respectively. Using this new 
boundary condition Hocking calculated both the eigenfrequencies and the damping 
rates of the surface capillary-gravity waves in a rectangular channel for a low- 
viscosity fluid. By assuming suitable values for the capillary coefficient A‘, Hocking 
obtained a plausible agreement with the experimental results reported by Benjamin 
& Ursell (1954), Case & Parkinson (1957) and Keulegan (1959). Unfortunately, in all 
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previous experiments the dynamics of the contact line was not investigated and, 
thus, the agreement between theory and experiment can only be qualitative. 

In  a recent paper, Miles (1991) generalizes the Hocking model by assuming that 
the h’-coefficient in (2.6) is a complex number. Miles restricts his analysis to the 
simplest case of an inviscid fluid in both the cases of a cylindrical and a rectangular 
tank. The essential non-dimensional parameters of the problem are : 

A k = klh, ,  h =- 
oh, ’ 

where h coincides with the parameter y introduced by Miles and 

A, = (Z) 
(2.7a, b )  

( 2 . 7 ~ )  

is the capillary length which is A, x 2.7 mm for pure water a t  room temperature. 
Experimental measurements of h do not appear to be available, while theoretical 
considerations suggest that (hl 4 1 for harmonic motion (Miles 1990). Disregarding 
static meniscus, Miles obtained an ‘exact eigenvalue equation ’ for the eigenfrequency 
for both rectangular and cylindrical containers. Theoretical results coincide with 
those obtained by Hocking in the case of a rectangular channel and with the results 
obtained by Graham-Eagle (1983) for a cylindrical container with pinned-end edge 
conditions ( A  = 0). I n  order to obtain analytical expressions for eigenfrequencies and 
damping rates, Miles considers the borderline case Ic + 0, retaining only contributions 
of the first order in the small parameter k (boundary-layer approximation). In  these 
conditions he also shows that corrections due to the presence of static meniscus are 
of a higher order than the first order in the perturbation parameter k (Miles 1990). 
Therefore, for k 4 1 ,  theoretical predictions are also expected to be sufficiently 
accurate for 8, + 90. At the first order in the small parameter k, the displacement of 
the free surface with respect to the static profile is given by:  

where i represents the imaginary unity. For small oscillation amplitudes of the free 
surface, the time-dependence of the contact angle at the vertical walls along the 
direction 8 = 0 is: 

where 
o’ is related to the free-end edge value o1 of (2.2) by: 

is the static contact angle andA(t) = v( t )  J,(Ic, a ) .  The angular eigenfrequency 

(2.10) 

where O ( k 2 )  is a small contribution of the order I c 2 .  In  our experiment the radius of 
the cylinder is a = 50.25 mm, A, = 2.7 mm and the non-dimensional parameter k for 
the first non-axisymmetric mode is k = 0.099. Therefore, the first-order approxi- 
mation is expected to be appropriate for the analysis of our experimental results. In 
particular for h = 0, the ratio o’/q as predicted from the boundary-layer 
approximation (equation (2.10)) is d/ol = 1.0736 which is virtually coincident with 
the value w‘/wl = 1.0737 which is obtained by numerically solving the exact 
eigenvalue equation (equation (4.5) in Miles 1991). The oscillation eigenfrequency I.” 
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and the capillary damping rate yL are related to the real and the imaginary part of 
w‘. According to the following experimental results, we can assume that capillary 
coefficient h is a real number and, thus, by exploiting the condition A, < a in (2.10) 
we find: 

(2.11a) 

(2.116) 

where 0: and wi are the real and the imaginary part of w’,  respectively, and 
v1 = w1/27c. Note that the capillary damping coefficient vanishes in the two borderline 
cases h = 0 and h = co. 

In  the presence of a small value of viscosity, the damping coefficient and the 
eigenfrequency become (Hocking 1 9 8 7 ~ )  : 

y = yL+ yv, v = v’-l8 2 v >  (2.12a, b)  
where yv and 8, depend on A and k. The influence of a small but not vanishing value 
of viscosity was investigated by Hocking (1987a) for a rectangular channel. For 
k -g 1,  yv and 8, approach the free-end values yv = 8, = y; except in the special case 
h z 0 where yv M 0.67yL. Here y; denotes the viscous damping rate for a rectangular 
channel with free-end boundary conditions. 

So far we have not taken into consideration the possible presence of a thin 
impurity film on the free surface. Previous experiments (Davies & Vose 1965; Scott 
1981) and theoretical works (Miles 1967) clearly show that contamination of the free 
surface significantly affects both the damping rate and the eigenfrequency. In 
particular it has been found that variations of surface tension of less than 5 dyn/cm 
from the clean surface value can cause a great increase in the damping rate. 
According to Miles (1967) the contribution of the thin surface film t o  the damping 
rate is: 

W E  ys = C 2 coth Ic,  h, 4n 
(2.13) 

where C is a coefficient which depends on the viscoelastic properties of the surface 
film: C = 1 for an inextensible film and ranges for a minimum value C = 0 t o  a 
maximum value C = 2 .  Equation (2.13) has been deduced by assuming free-end edge 
conditions and by disregarding terms of a higher order than 6 .  For deep water 
(kl h 9 1) and in the case of an inextensible film (C = l),  the damping coefficient ys of 
(2.13) is virtually coincident with the viscous damping coefficient yw of (2.4). 
Therefore the presence of an inextensible film is expected to produce a doubling of 
the damping rate due to viscosity in agreement with experiments (Davies & Vose 
1965; Scott 1981). We emphasize that all mechanisms so far discussed are intrinsically 
linear mechanisms which give damping coefficients (equations (2.4), (2.11 a) and 
(2.13)) and eigenfrequencies which do not depend on the oscillation amplitude of the 
free surface. 

2.3. Theory of nonlinear capillary damping 
Boundary condition (2.6) holds good if the contact angle is a linear function of the 
contact line velocity and no capillary hysteresis is present. Experiments seem to  
indicate that the real behaviour at the liquid-wall interface may be strongly 
nonlinear (capillary hysteresis). The possible effect of the nonlinear behaviour of the 
dynamic contact angle on the damping of surface gravity waves was investigated 
theoretically some years ago by Miles (1967) using a different theoretical approach. 
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Here we briefly describe the main results that we obtain by following a different 
procedure which allows us to generalize the Miles’ results concerning the damping 
rate and to obtain new theoretical results for the eigenfrequency. A justification of 
this approach and a comparison with Miles’ results is given in Appendix A. The 
starting point is the capillary boundary condition (2.6) where the coefficient h is not 
a constant coefficient but is assumed to be a function of the velocity v of the contact 
line. As shown in the Appendix, the main effects of this new boundary condition can 
be accounted for by introducing an effective capillary coefficient he,, which is given 
by the average value of h(v )  over an oscillation period. The eigenfrequency and the 
damping rate of the first non-axisymmetric mode are still approximately given by 
( 2 . l l a ,  b )  if one substitutes Aeff for A. According to Miles (1967) and to our 
experimental results, we consider the case where the capillary coefficient h is a linear 
function of the absolute value of v and the velocity of the contact line is a sine 
function of time. In  this case we find: 

2DwA, A,,, = ( A )  = (0l.I) = ~ 

7 L ’  
(2.14) 

where D is a constant coefficient, A ,  is the oscillation amplitude of the contact line 
and ( ) denotes the average value over an oscillation period. By putting he,, given 
by (2.14) in the place of h in (2.11a, b ) ,  we find a theoretical expression for the 
capillary damping coefficient which depends on the oscillation amplitude A,  and 
approaches the Miles value (1967) in the limit h + co. Note that both yL and v’ are 
no longer constant coefficients but depend on the oscillation amplitude A,. This is the 
very special feature of the nonlinear damping model compared to the previous 
models of linear damping where both the damping rate and the eigenfrequency were 
independent of the oscillation amplitude. 

3. Experiment 
3.1 Apparatus and experimental procedures 

The experimental set-up used to generate the oscillation of the cylindrical tank and 
to measure the surface displacement of the free surface is shown in figure 1. This 
apparatus is the same as that used by Nobili et al. (1988) to investigate the chaotic 
behaviour of surface gravity waves and it is similar to that used by Douady (1988, 
1989). 

The fluid (bi-distilled water) is contained in a Plexiglas cylindrical tank of radius 
a = 50.25 mm. The internal surfaces of the Plexiglas container are cleaned by gentle 
scrubbing with anionic detergent (DECONTAMIN, Inter Sciences SA) and, then, by 
rinsing with clean bi-distilled water. No suctioning procedure is used to remove 
contaminant particles from the free surface except in the case of damping rate 
measurements (see $3.4). All the experiments are performed with depth h = 130 mm 
for the fluid (h  % a ;  deep water). The oscillation of the cylindrical container in figure 
I is produced by a 150 W loudspeaker (L). The local displacement, ~ ( r ,  8, t )  of the free 
surface is detected by using the method outlined in figure 1.  A laser beam (LB) 
impinges orthogonally on the bottom of the container, then is refracted by the free 
surface of the fluid and, finally, is collected by a dual-axis position-sensitive 
photodetector (PP). The photodetector gives two output signals (V, and V,) that are 
proportional to the displacement of the laser spot on the photosensitive surface of the 
photodetector with respect to  its centre along two orthogonal axes x and y (x is the 
oscillation axis of the carriage). Then these signals, for small values of 7, are 
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FIGURE 1 ,  Sketch of the experimental apparatus. L = loudspeaker ; OB = brass bar; 
SB = stainless-steel bars ; LB = laser beam ; BB = ball-bearings ; MD = electromagnetic device to 
measure carriage displacement ; C = cylindrical container ; PP = position-sensitive photodetector. 

proportional to the spatial derivatives aqlax  and aq/ay a t  the incidence point of the 
laser beam. By changing the incidence point we can reconstruct the surface 
deformation 7 a t  each point of the free surface by integrating the output signals with 
respect to  the x- and y-coordinates. This method can only be used to investigate the 
free-surface displacement far from the meniscus. Indeed, if the laser beam impinges 
on the free surface very close to the meniscus, the refracted beam crosses the vertical 
walls of the cylindrical container and cannot be collected by the photodetector. The 
surface profile near the vertical walls is obtained by measuring the reflection angle 
of a laser beam which impinges on the free surface from the top. 

In our experiment the power of the laser beam was set to 0.5mW and no 
appreciable variation of the damping rate and of the eigenfrequency of the 
fundamental mode was measured when the laser power was increased up to 3 mW. 
Therefore heating effects of the laser beam are negligible in our experimental 
conditions. 

The static and dynamic behaviour of the meniscus a t  the vertical walls is 
investigated using the optical set-up shown in figure 2. A He-Ne laser beam is 
focused by the objective 0 (60 cm focal length) on a small region (200 pm width) of 
the meniscus. The laser beam is refracted by the fluid wedge and impinges on a 
horizontal screen X a t  a distance x from the vertical wall. The laser can be moved 
along the vertical z-axis by means of a micrometric translator. When the laser spot 
on the free surface reaches the contact line (C in figure 2),  it  suddenly splits into two 
divergent transmitted laser beams which correspond to optical rays which impinge 
over and below the contact line, respectively. Then, the vertical position h, of the 
contact line can be obtained by reading on the micrometric screw the vertical 
displacement of the laser beam. Optical rays which pass above the contact line are 
not refracted, whilst those which pass below the contact line are refracted by the fluid 
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FIGURE 2. Sketch of the optical set-up used to measure the static and the dynamic behaviour of 
the contact line, C, and of the contact angle 8,. The He-Ne laser beam is focused on the meniscus 
by means of a 60 cm-focal length objective. The beam width a t  the meniscus is A = 200 pm. The 
laser beam is refracted from the meniscus and impinges on the horizontal screen S a t  distance x 
from the vertical wall of the cylindrical container. h, is the height of the contact line with respect 
to  the horizontal screen S. 

wedge. By measuring the position of the two laser spots on the screen S, we obtain 
the angles Bi and OK. which the incident and the refracted beams make with the 
horizontal plane, respectively. The macroscopic contact angle 8, is related to Oi and 
8, by the expression: - 

sin 8i - sin OR 
cos oi - (nz - sin2 8,); ' 

tan8, = 

where n is the refractive index of the fluid (n = 1.33 for water). The accuracy of the 
measurement of the contact angle is & 1". 

The same experimental method is used to investigate the dynamic behaviour of 
the contact angle and of the contact line when the cylindrical tank is subjected to 
horizontal oscillation. I n  this case, however, a stroboscopic technique is used since 
both the contact angle and the vertical position of the contact line change 
periodically with time. The intensity of the laser beam is periodically modulated by 
means of an optical shutter which generates periodic laser pulses a t  the same 
repetition frequency as the oscillator with a duration time smaller than 1 ms, that is 
about &, of the period 7:. The retardation time AT of the pulses with respect to the 
oscillator which drives the cylindrical tank can be continuously changed. The 
unperturbed position d = 0 of the contact line can be established by moving the laser 
beam along the vertical axis until the refracted beam fully disappears when the free 
surface does not oscillate. This means that the spot of the laser beam remains just 
above the static contact line. By repeating the same procedure when the free surface 
oscillates and using the stroboscopic lightening at a given retardation time AT, we 
can then measure the corresponding vertical displacement d ( A T ) .  The estimated 
accuracy of this measurement is of the order of Ad = k 100 pm. Then, by putting the 
spot of the laser beam just below the position of the contact line a t  time t = AT, we 
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FIGURE 3. (a )  Oscillation amplitude A ,  of the contact line versus the amplitude a1 of the first 
harmonic component of the tilt angle at  the centre of the free surface. The oscillation amplitude 
of the contact line is measured where the excitation x-axis intersects the vertical wall (6' = 0 in 
(2 .1~)) .  ( b )  Maximum and minimum dynamic contact angle versus the amplitude a1 of the first 
harmonic component of the tilt angle at  the centre of the free surface. These angles are measured 
at the point where the excitation z-axis intersects the vertical wall (6' = 0 in (2.1 a)).  0 ,  experimental 
results obtained by increasing the oscillation amplitude of the cylindrical tank. -, oscillation 
amplitude predicted by the free-end edge conditions. The cylinder radius is a = 50.25 mm, the 
height of the fluid is h = 13 cm and the oscillation frequency corresponds to the experimental value 
of the resonance frequency of the first non-axisymmetric mode at  very small oscillation amplitudes 
(v = 3.220 Hz). a, is the threshold amplitude for the sliding of the contact line. 

can measure the contact angle OJA?'). The accuracy of the measurement of the 
contact angle in this regime is estimated to be +3". 

3.2. Dynamic properties of the meniscus 
If the cylindrical tank is subjected to a monochromatic horizontal oscillation of 
amplitude xo and of a frequency close to the resonance frequency of the first non- 
axisymmetric mode, two main regimes occur depending on the amplitude xo. At 
small oscillation amplitudes, below a critical value x:, the contact line remains at rest 
and the contact angle oscillates between a minimum value Omi, and a maximum 
value Omax. Above the threshold ~ f ,  the contact line starts to  slide and the oscillation 
amplitude A ,  of the contact line is an increasing function of xo. The threshold 
amplitude xi greatly depends on the oscillation frequency of the cylindrical tank and, 
thus, it is not a significant parameter as far as this system is concerned. The most 
relevant parameter in this experiment is the maximum oscillation amplitude of the 
free surface which is proportional to  the oscillation amplitude of the tilt angle a at 
the centre of the free surface. Indeed, by repeating measurements at  different 
frequencies close to the resonance of the first non-axisymmetric mode, we find that 
the transition to the motion of the capillary line always occurs at  the same critical 
tilt angle a,. 

Figure 3(a )  shows the oscillation amplitude A ,  of the contact line versus the 
amplitude a1 of the first harmonic component of the tilt angle CL of the free surface 
at the centre (a = i3q/i3xJ,,o,v=o). Amplitude aI is measured by sending the x-output 
of the position-sensitive photodiode in figure 1 to the input channel of a digital 
waveform analyser (Data Precision-Data 6100) and by making the Fourier analysis 
of the signal. The oscillation amplitude of the contact line is measured at the point 
where the excitation x-axis intersects the vertical wall (8 = 0 and r = a in (2.1a)). 
The dots in figure 3 (a )  represent the experimental results obtained by increasing the 
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Number 
of mode a, (exp.) a, (the.) 

1 1.8f0.3 1.4&0.15 
2 7 .5f1 .5  6.6k0.7 
3 1 4 f 3  13.4k1.4 
4 19.5+4 21.6+2.2 

TABLE 1. Experimental and theoretical values of the threshold tilt angles for the 
first four non-axisymmetric modes. 

oscillation amplitude of the cylinder. The same results are obtained, within the limits 
of experimental uncertainty of 10-15 YO, in the case of decreasing oscillation 
amplitudes. At the critical tilt angle a, = 1.8' f 0.3', the contact line starts to slide. 
Owing to the experimental uncertainty Ad = f 100 pm on the displacement of the 
contact line, the experimental value of the critical tilt angle is affected by a great 
uncertainty Aa, % 15%. The full line in figure 3(a )  represents the theoretical 
prediction for the oscillation amplitude of the contact line when the surface mode is 
given by a Bessel function (see (2.1)) and, thus: 

A ,  = = O.Ollaa,, 

where a, is expressed in degrees and a is the radius of the cylindrical basin. Note that 
the experimental values of A ,  always remain below the theoretical full line and tend 
to approach it as the oscillation amplitude of the free surface is increased. This 
behaviour agrees with the predictions in (2.8) if we assume (as confirmed by the 
following experimental results) that the capillary coefficient h is not constant but 
greatly increases as the tilt angle a, increases. 

Figure 3 ( b )  shows the maximum and minimum values of the dynamic contact 
angles versus a, for increasing oscillation amplitudes of the cylinder. The critical tilt 
angle a, in figure 3(a )  is also indicated in the figure. We see that the difference 
between the maximum contact angle B,,, and the minimum angle Bmin is an 
increasing function of a1 which shows a change of slope close to the critical tilt angle 
a, = a,. The broken lines in figure 3 ( b )  are guide-lines for the reader's convenience. 

To understand the physical meaning of the threshold a,, we investigated the 
behaviour of the first four non-axisymmetric surface modes. The qualitative 
behaviour of the contact line and of the contact angle in these cases is analogous to 
that observed in the case of the first excited mode (see figure 3) ,  although the noise 
of the experimental data is greater. In particular, the maximum and minimum 
values of the contact angle at  the critical angle a, are the same as in figure 3 ( b )  within 
the limits of experimental uncertainty of 3%, whilst the value of the critical tilt 
angle a, is an increasing function of the number n of the mode. Column 2 in table 1 
shows the experimental values of the threshold tilt angles a, for the first four non- 
axisymmetric modes. The accuracy and reproducibility of the critical angles is 
estimated to be 15 %. The experimental results in table 1 can be explained if we make 
the assumption that the contact line remains a t  rest until the contact angle becomes 
lower than a minimum allowed value Bmi, x 47' or greater than a maximum value 
Omax z 79". These angles correspond to the values measured at the critical tilt angle 
a,. When the contact angle exceeds this static range, the contact line cannot remain 
at  rest and starts to slide on the vertical walls. When the nth mode is excited and the 
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FIGURE 4. , displacement d(t) of the contact line and 0, variation AOC(t) = O , ( t )  - 8, of the contact 
angle at  time t when the oscillation amplitude of the tilt angle a t  the centre of the free surface is 
a1 = 8.3". The horizontal displacement of the tank is maximum a t  t = 224 ms. The left-hand scale 
corresponds t o  d(t)  whilst the right-hand scale corresponds to A@,@). The other relevant parameters 
of the experiment are the same as in figure 3 (a). -, best fit of the experimental points concerning 
d(t)  to the sine-function: d(t)  = A f B  sin (ot+q5) where A ,  B and q5 are free parameters: 
A = 0.50 mm, B = 3.67 mm and $ = 10.5". Angular eigenfrequency w is fixed to be w = 20.29 rad/s. 
~ _ -  , square-wave signal which roughly approximates the actual behaviour of the contact angle. 

contact line is a t  rest, the free-surface displacement can be described by using the 
Miles capillary model with h = 0. According to Miles (1991), the free-surface 
displacement is still represented by (2.8) with h = 0 where k ,  must be replaced by the 
wavevector kn of the nth non-axisymmetric longitudinal mode (see also the full line 
in figure 6). In  this regime, according to (2.8), the oscillation amplitude a, of the tilt 
angle at  the centre of the free surface is proportional to the oscillation amplitude 
At3, of the contact angle. The contact line starts to slide as soon as the contact angle 
exceeds the static range (AOc > k(t3rnax- Omin)). By using the theoretical expression in 
(2.8) for h = 0 with kn in place of Ic, and by accounting for the condition A, 4 a ,  we 
find : 

(3.3) 

The threshold for the sliding of the contact line is reached when AOC exceeds the static 
range, that is: 

In our experiment for all surface modes we find Omax - Omin x 32" -f 3" for a, = a,. By 
substituting this value in (3.4) together with the value A, = 2.7 mm for pure water, 
we find the theoretical values of a, given in column 3 of table 1. A satisfactory 
agreement between the measured and the calculated values is found to exist if we 
account for the large experimental uncertainties on a, (experimental) ( z 15 YO) and 
a, (theoretical) ( X  10%). 

The stroboscopic method in figure 2 allows us to measure the displacement d(t )  of 
the contact line and the variation AB,(t) = O , ( t )  - 8, of the contact angle at  each time 
t. The experimental values of d(t)  (solid dots) and AO,(t) (open dots) for a1 = 8.3" are 
shown in figure 4. The-left-hand scale corresponds to d(t )  and the right-hand scale to 
AO,(t). The time a t  which the displacement of the tank reaches its maximum value 
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FIGURE 5. (a) Dependence of the capillary coefficient h = v/(oh,DO,) versus the modulus lwl of the 
velocity of the contact line. (b) Dependence of the capillary coefficient h = v /[wA,  (cos O,(t)  - cos O,)] 
versus the modulus (w( of the velocity of the contact line. 0,  experimental results concerning 
advancing (w > 0) and 0, receding (w < 0) contact lines. -, best fit of the experimental points 
to the linear dependence A = D(w1, where D = 0.5f0.05 s/cm. 

v (mm/s) v (mm/s) 

is t = 244 ms. The oscillation period is To = 0.3095 s. The solid line in figure 4 
represents the best fit of the experimental points concerning d ( t )  with the sine- 
function : d(t )  = A +B sin (wt + $). The displacement d ( t )  of the contact line is 
virtually sinusoidal but its average value d = A = 0.7 mm does not coincide with the 
unperturbed value d = 0. The variation A8,(t) of the contact angle shows a periodic 
but non-sinusoidal time-dependence. Therefore the linear boundary condition in 
(2.6) is not appropriate for the description of our experimental results. A better 
approximation to the present experimental results seems to be provided by the Miles 
(1967) nonlinear boundary condition (see (A 3) in the Appendix). In  particular, the 
time-variation of the contact angle in figure 4 can be roughly approximated by a 
square wave signal with 8, x 85" for the advancing contact line and 8, m 32" for the 
receding contact line. The broken line in figure 4 represents a square-wave signal 
which roughly approximates the actual behaviour of the contact angle. It is 
interesting to note that the velocity v(t) of the contact line and the contact angle O,(t) 
are in-phase periodic signals. This means that the boundary condition which connects 
v(t)  and e,(t) can be represented by (2.6) with a real but not constant capillary 
coefficient A. The same kind of measurements were repeated for different oscillation 
amplitudes and give similar results. I n  particular i t  is important to observe that the 
displacement of the contact line is always well represented by a sine-function of time 
even for values of a, which slightly exceed the critical value a,. 

The experimental results in figure 4 allow us to investigate the actual boundary 
condition a t  the macroscopic contact line. Indeed, from figure 4 we can obtain both 
the velocity v(t)  of the contact line and the variation AO,(t) of the contact angle and, 
thus, we can calculate the capillary coefficient defined by (see (2.7b) and (2.6)) : 

(3.5a) 

Figure 5 (a) shows coefficient h versus the modulus of velocity 181. The solid and open 
dots denote experimental results for the advancing (v > 0) and receding (w < 0) 
contact lines, respectively. Although a large spread of experimental results can be 
clearly seen in figure 5(a), we observe that h is not a constant coefficient but i t  
increases versus lv[ and that there is an asymmetry between results concerning the 
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advancing and receding contact lines. I n  particular the solid dots are systematically 
above the open dots. This asymmetry can be understood if we note that the capillary 
coefficient in ( 3 . 5 ~ )  has been defined by making the assumption that A6, 4 1,  whilst, 
in our experiment, A6, GZ 1 .  According to the Miles model of nonlinear damping 
(see the Appendix), one might expect (A3), rather than (2.6), to  be a better 
approximation to the correct boundary condition for high values of AOC. This means 
that the capillary coefficient h should be defined by: 

(3 .5b )  

Using this new expression for h we find the dependence shown in figure 5 ( 6 ) .  I n  this 
case the asymmetry of the experimental results concerning the advancing and 
receding contact lines is removed. Within the limits of experimental uncertainty, h 
can be represented by a linear function of Ivl. The full line in figure 5 ( b )  represents 
the best fit of experimental data to  the linear dependence A = DIvl where 
D = 0.5&0.05 s/cm. Similar results are obtained by repeating the same kind of 
measurement for different values of the oscillation amplitude of the cylindrical 
container if a, > a,: within the limits of experimental uncertainty, we always find 
A = D 1vl. Therefore in our experiment the linear Hocking capillary regime ( A  = const) 
is never observed except in the pinned-end case ( A  = 0). 

3.3 Static properties of surface wave8 
Surface properties of fluids depend on the surface tension T of the free surface. 
For bi-distilled water a t  room temperature, the surface tension is considerable 
(T = 72 dynes/cm) and greatly decreases if the free surface is contaminated by 
impurities. Therefore it is important to control surface tension during experiments. 
This is done by measuring the reflection angle of a laser beam impinging on the free 
surface from the top a t  different points along the x-axis. The reflection angle is 
related to the local tilt angle of the free surface. According to the theory of 
capillarity, the tilt angle shows an exponential dependence on the distance from the 
vertical wall with a characteristic length A,. I n  fresh water samples we find A, = 
2.70k0.05 mm which corresponds to a surface tension T = 71.5+ 3 dynes/cm, in 
agreement with known experimental values. This kind of measurement is repeated 
continuously during the experiment. Both the characteristic length A, and the static 
contact angle are found to be slowly decreasing functions of time. In  particular 
surface tension is reduced to about 67 dynes/cm after about 24 h, whilst no 
appreciable variation is found during the first hour. 

The dynamic profile of the free surface is characterized by the oscillation 
amplitude yo(%) of the free-surface displacement ~ ( x ,  t )  ( ~ ( x ,  t )  = y&x) e-iwt), where x 
denotes the distance from the centre of the free surface along the excitation axis x. 
The oscillation amplitude q 0 ( x )  is measured by using a laser beam which impinges on 
the free surface from the top. The laser beam impinges on the free surface at  a given 
point x and the reflected beam is collected by the position-sensitive photodiode. The 
photodiode can be continuously moved along the x-axis by means of a precision 
micrometric translator until the output signal becomes zero. This occurs when the 
spot of the laser beam is at the centre of the active area of the photodiode. Therefore, 
by measuring the corresponding displacement of the micrometric translator and 
using the other relevant geometric parameters of the experiment, we can obtain the 
static reflection angle and, thus, the static tilt angle of the free surface at each point 
x.  I n  order to  use this procedure to  obtain the tilt angle, the distance between the free 

2) A =  
w ~ c  [cos e,(t) - cos e,] . 
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FIGURE 6. Oscillation amplitude v,(x) of the vertical displacement of the free surface versus the 
distance z from the centre of the free surface when the oscillation amplitude of the tilt angle at the 
centre of the free surface is a1 = 0.44" (aI < ac). -, theoretical dependence given by (2 .8)  when 
the tilt angle at the centre of the free surface, is a1 = 0.44' and h = 0. No free parameter is used 
to draw the full line. ---, the Bessel contribution only in (2 .8) .  

surface and the photodetector needs to be known. In  our experiment the distance of 
the photodetector from the centre of the free surface is L = 10 cm and, thus, errors 
due to the displacement of the mean water level from the horizontal quiescent level 
can be neglected for small-amplitude waves. The oscillation amplitude of the free 
surface a t  point x is obtained by switching on the loudspeaker and by measuring the 
amplitude of the consequent oscillating output signal of the photodiode. For small 
oscillation amplitudes, the amplitude of the first harmonic of the x-output signal of 
the photodiode is proportional to the local value of the derivative i3To/i3x through a 
coefficient which depends solely on known geometric parameters. Therefore, by 
moving the laser beam along the x-axis, we can measure both the static local tilt 
angle and its oscillation amplitude versus the x-coordinate. Integration of the 
experimental tilt angles with respect to x gives both the static surface displacement 
r,(x) and the oscillation amplitude of the surface displacement r 0 ( x ) .  In order to use 
this integration procedure an integration constant needs to be known. This constant 
can be obtained from the analysis of the experimental data by imposing that the 
average surface level must coincide with the static one, owing to the incomprimibility 
of water. In  the special case where the contact line remains a t  rest (a, < ac), the 
unknown integration constant is obtained by imposing d = 0 a t  the walls. The 
experimental values of q0(x) obtained for a1 = 0.44" 4 a, are shown in figure 6. Dots 
mark the experimental results, whilst the solid line represents the theoretical 
predictions of the boundary-layer approximation (equation 2.8)) for h = 0. No free 
parameter is used to draw the solid line. The broken line represents the Bessel 
contribution in (2.8) only. Small deviations of the experimental points from the 
theoretical behaviour close to the maximum are probably related to second-order 
contributions in k which were disregarded in (2.8) ( k  = k ,  A, E 0.1 in our experiment). 
It was not possible to investigate the behaviour of the surface displacement above 
the threshold a, because, in this regime, the oscillation amplitude of the reflected 
beam close to the contact line became very high and exceeded the measurement 
range of our apparatus. 

I n  order to investigate the influence of the boundary conditions on the surface 
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FIGTJRE 7 .  Amplitude of the first harmonic component of the tilt angle at  the centre of the free 
surface versus the amplitude of oscillation of the cylindrical container. - -, prediction of the 
theory for free-end edge conditions. a, is the threshold value in figure 3(a) .  The cylinder radius is 
a = 50.25 mm, the height of the fluid is h = 13 em and the oscillation frequency is v = 3.220 Hz. 
Details of the behaviour close to critical tilt angle a, are shown in the insert. 

waves we measured the dependence of the tilt angle a t  the centre of the free surface 
on the oscillation amplitude xo of the cylindrical tank. The cylindrical tank was 
forced a t  the frequency u = 3.220 Hz (the resonance frequency of the low-amplitude 
regime where the contact line is at rest). Figure 7 shows the amplitude of the first 
harmonic component a1 of the tilt angle a t  the centre of the free surface versus x,, for 
increasing amplitudes. The behaviour of al below the critical angle a, is shown in the 
insert in figure 7. The solid line in figure 7 represents the theoretical value of the tilt 
angle versus xo as predicted by the free-end theory for a damping coefficient 
y = 18 mHz and for u = 3.220 Hz when nonlinear contributions in the Lagrangian of 
surface waves are considered (Miles 1984). Note that the nonlinear behaviour of 
experimental points in figure 7 occurs when the oscillation amplitude of the tilt angle 
at  the centre of the free surface is still much lower than that where the free-end 
theory predicts the occurrence of significant nonlinearities owing to the coupling of 
the fundamental mode with higher-order modes (Miles 1984). Therefore the nonlinear 
behaviour in figure 7 seems to be closely related to nonlinear capillary effects 
occurring at the boundaries. 

3.4. Damping and eigenfrequencies of surface gravity waves 
To assess the influence of capillary boundary effects on the dynamic properties of 
surface gravity waves, we measured damping rate y and eigenfrequency v of the first 
resonant mode as a function of the oscillation amplitude. The damping rate and 
eigenfrequency of capillary-gravity waves in water are known to be greatly sensitive 
to very small amounts of contaminating particles on the free surface. It has been 
demonstrated that the distilling process is not sufficient to  completely remove 
surface active particles from water and that the fallout of dust particles from the air 
is likely to  be significant over an hour. Therefore measurements of damping rates and 
eigenfrequencies require a special treatment of the free surface and a short 
measurement time. Scott (1981) and Davies & Vose (1965) showed that suction of 
surface contaminants by using a clean glass capillary attached to  a jet pump greatly 
reduces surface contamination. 
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FIGURE 8. Modulus of the amplitude C L ~  of the first harmonic component of the tilt angle a t  the 
centre of the free surface versus time in a logarithmic scale when the forcing is switched off. We note 
the linear dependence for t > 5 s when the oscillation amplitude of the tilt angle becomes lower than 
the threshold value. This linear dependence means that the decay of surface oscillations for 
t > 5 s is well represented by a single exponential function. 

Our measurements of damping rate and eigenfrequency have been performed using 
high-purity bidistilled water (Baker Analyzed HPLC for high performance liquid 
chromatography) and by suctioning the free surface according to the Scott (1981) 
procedure. Furthermore the duration of measurement was less than 5 min in order 
to  avoid contamination from dust particles in the air. All of the water used passed 
the sensitive shaking test (Kitchener & Cooper 1959). The surface oscillation is 
excited at  the frequency v = 3.020 Hz and, then, the carriage oscillation is stopped 
when the electric oscillating signal which drives the loudspeaker crosses the zero 
level. The damped oscillation of the tilt angle a t  the centre of the free surface is 
measured by means of the apparatus in figure 1. The output signal of the position- 
sensitive photodetector is sent to a digital waveform analyser and filtered by means 
of a 24 db electronic filter t o  reduce noise and harmonic components. Then, a single 
decay signal is recorded. The response-time of the electronic filter is less than 0.2 s 
which is negligible compared to the characteristic damping times in our experiment. 
The logarithm of the modulus of the experimental signal versus time t is shown in 
figure 8. The damping signal is recorded starting from z 0.5 s after the carriage 
oscillations stop. We clearly see that the damping rate greatly depends on time and, 
thus, on the oscillation amplitude of the free surface. At the smallest amplitudes 
(a  < aC), the damping is well represented by a single exponential decay (constant 
slope in figure 8), whilst a t  higher amplitudes the damping rate greatly depends on 
the oscillation amplitude. The same kind of measurement was repeated for different 
oscillation amplitudes of the cylindrical tank. In  particular, if the oscillation of the 
free surface was excited below the threshold value, we always found a single 
exponential decay with a constant decay rate that was independent of the oscillation 
amplitude. 

A completely different behaviour is observed if a surface active material (Kodak 
Photo-Flo) is added to water in a 1 YO concentration. I n  this case the contact angle 
becomes zero and the damping rate becomes almost constant for every oscillation 
amplitude in agreement with previous results (Cocciaro et al. 1991) obtained for pure 
octane wetting the solid walls. 

3 FLM 246 
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FIGURE 9. (a )  Dependence of efective damping rate y on the oscillation amplitude aI of the tilt 
angle. -, prediction of the boundary-layer approximation in ( 2 . 1 1 ~ ~ )  for A given by (3.7) where 
D = 0.5 s/cm and A, given in figure 3 ( a ) .  ( b )  Dependence of resonance frequency Y on the oscillation 
amplitude a1 of the tilt angle. The resoriance frequency and the corresponding oscillation amplitude 
are calculated by making the local best fit of the experimental damped oscillating output signal of 
the photodetector using the procedure described in the text. - ~, prediction of the boundary-layer 
approximation in (2.11 b)  for D = 0.5 s/om. 

Frequency v and damping coefficient y versus oscillation amplitude a, of the tilt 
angle are obtained from the experimental points in figure 8 by using the fitting 
procedure discussed in our previous paper (Cocciaro et al. 1991). The experimental 
values of' damping rate y and oscillation frequency v versus a, are shown in figures 
9 ( a )  and 9 ( h )  respectively. 

Two different regimes are seen t o  exist : 
(i) A low-amplitude rpgime (a < 1") where free decay is well represented by a single 

exponential decay with a constant and very low damping rate y % 15+2 mHz and 
a virtually constant oscillation frequency v z 3.222 2 0.001 Hz ; 

(ii) A higher-amplitude regime ( a >  1') where both the decay rate and the 
eigenfrequency are functions of a,. In  this regime the damping rate first increases 
versus a, to reach a maximum value which is ten times higher than that of regime 
(i) and, then, it decreases. 

It is important to note that, although the main features of the damping rate and 
the eigenfrequency in the high-amplitude regime can always be reproduced by 
repeating the same kind of measurement on different samples, quantitative 
differences are often found (up to M 30 mHz). These differences are probably related 
to  difficulties in obtaining identical and uniform boundary conditions after the 
cleaning procedure. 

3.5, Discussion 
The experimental results in figure 9 can be explained by using the theories of 
capillary damping discussed in 902.2 and 2.3. We must distinguish between two 
different cases. 

(i) Low-amplitude regime (a,  < a,) 
In  this case, the capillary line always remains at  rest during the motion of the free 

surface. This means that h = 0 (pinned-end edge condition) and, thus, both the 
damping coefficient and the eigenfrequency are expected to be independent of the 
oscillation amplitude (see $2.2) in agreement with the experimental results. If we 
disregard the possible presence of a thin contaminating film on the free surface, the 
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damping coefficient and the eigenfrequency are given by (2 .12a)  and (2 .12b) .  By 
solving the 'exact eigenvalue equation' of the Miles theory (1991) and by using the 
values g = 980.5 cm/s2 and A, = 2.7 mm, we find yL = 0 and v' = 3.255 Hz. The 
viscous contributions yv and 6, can be estimated by making the assumption that the 
Hocking results (1987a, b )  which were obtained for a rectangular channel still hold 
good for our cylindrical geometry if we substitute the free-end damping rate y& for 
the rectangular channel with the free-end value yw for the cylindrical container. 
Under this assumption we estimate that yv = 6, = 0.67 yw. By substituting the 
cinematic viscosity v, = 0.0099 cm2 s-l a t  T = 21 "C in (2 .3)  and (2.4) we find 
yv = 8, = 0.67 yw = 12 mHz and, thus: 

y = yL+yv = 12 mHz; v = v'-$8" = 3.249 Hz, (3 .6)  
which are close to our experimental values: y = 15+2 mHz and v = 
3.222i-0.001 Hz. However the theoretical value of the eigenfrequency is 27 mHz 
higher than the experimental one, whilst the theoretical damping rate is 3 mHz lower 
than the experimental value. In  principle, these discrepancies with the theory could 
be related to the presence of a residual surface contaminating film. For instance, the 
presence of an inextensible surface film (C = 1 in equation (2 .13))  is expected to 
produce a damping rate y = 0.67 yw+ ys = 30 mHz which is much higher than the 
experimental value y = 15 mHz. However, the precautions taken to avoid surface 
contamination make this interpretation unlikely, although it is admitted that very 
low levels of contamination are difficult to detect. 

In order to find an alternative explanation of discrepancies between theory and 
experiment, we must remember that the theoretical values of yL and v' for h = 0 were 
obtained by solving numerically the 'exact eigenvalue equation' (Miles 1991) were 
the effects due to static meniscus are disregarded. According to Miles, the static 
meniscus is expected to produce corrections to the 'exact eigenvalue equation' of 
second order in the small parameter k M 0.1. Since the first-order capillary 
contribution to  the eigenfrequency for h = 0 is Av z 200 mHz, we can then expect 
the static meniscus to produce corrections of the order of Avk M 20 mHz which is 
precisely of the same order of magnitude as in the experimental discrepancy. 
Furthermore we remember that the damping rate yv and the eigenfrequency were 
obtained by extrapolating to our cylindrical geometry the Hocking results which are 
valid, in principle, for a rectangular container. 

(ii) Frequency-amplitude regime (a, > a,) 
The linear theories in $2.2 clearly predict damping rates and eigenfrequencies 

which do not depend on the oscillation amplitude of the free surface, in complete 
disagreement with experimental results. This is also the case of the theory concerning 
the surface contaminating film (see (2 .13)) .  Therefore we infer that the higher- 
amplitude regime cannot be explained in terms of these linear theories. According to 
the experimental results in figure 5 ( b )  the capillary coefficient h in this regime is a 
real number that increases linearly versus the modulus I'uI of velocity of the contact 
line. According to the theoretical analysis in $2.3 and in Appendix A, we can 
approximately account for the complex behaviour of the system by defining an 
effective capillary coefficient 

where D = 0 . 5 1 0 . 0 5  s/cm is the proportionality coefficient given by the best fit of 
the experimental points in figure 5 ( b ) .  By substituting the experimental values of A ,  

3-2 
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versus a1 (figure 3a) in (3.7), we obtain the coefficient heff versus a,. Therefore the 
theoretical values of the damping rate and the eigenfrequency of the first mode for 
each value of a1 can be obtained by substituting A,,, for h in (2.11 a )  and (2.1 1 b )  and 
by using (2.12a) and (2.12b) with yv = 8, = yw = 18 mHz. The full curves in figures 
9(a) and 9 ( b )  represent our theoretical results. The agreement between theory and 
experiment in both cases is satisfactory if one considers the roughness of the 
nonlinear model and that no free parameter has been used to draw the theoretical full 
curves. 

4. Conclusions 
All the experimental results reported in this paper and in a previous paper a,bout 

surface gravity waves in the presence of wetting boundary conditions (Cocciaro et al. 
1991) clearly confirm that the dynamic properties of fluids are greatly afk'ected by the 
capillary effects occurring near the walls of the container. In  particular, the dynamic 
properties of the contact angle and of the contact line play a fundament.al role. Up 
to now theoretical models have made special assumptions as far as these properties 
are concerned but, to  the best of our knowledge, no dir experimental invest,igation 
of the dynamic properties of the contact line has so far been reported for surface 
gravity-capillary waves. Most experiments on the behaviour of the contact line have 
dealt with the behaviour of the contact angle in the presence of a steady 
hydrodynamic flow (see, for instance, Dussan 1'. 1979). In  the present paper, we 
report a detailed investigation of the dynamic properties of the meniscus and of 
surface waves when a low viscosity fluid is subjected to a horizontal oscillation at  a 
frequency close to the resonance frequency of the first non-axisymmetric mode. The 
non-dimensional capillary coefficient h is measured for the first time and is found to 
be a real coefficient which is virtually proportional to the velocity of the contact' line. 
In  our experiment h ranges between a minimum value h = 0 and a maximum value 
A w 4. By generalizing the theory of linear capillary damping in order to account for 
the nonlinear behaviour of the contact line, we have been able t o  explain the main 
experimental results. I n  spite of considerable approximations made in order to carry 
out our analytical calculations, a satisfactory quantitative agreement between 
theory and experiment was found. To the best of our knowledge our results give the 
first experimental demonstration of the relevance of the capillary mechanism 
proposed by Miles and Hocking. 

We note that the experimental results reported in this paper are fairly general for 
fluids which do not wet the walls, whilst a completely different behaviour occurs if 
the fluid wets the vertical walls (Cocciaro et ab. 1991). 

We conclude this short discussion by remarking that the experiment.al results 
obtained in this paper have important consequences as far as the nonlinear properties 
of surface gravity waves are concerned. Miles (1984) theoretically investigated the 
nonlinear behaviour of surface gravity waves by writing the nonlinear Hamiltonian 
of surface waves as a power expansion on surface modes truncated at  the fourth 
order. Owing to the nonlinear coupling between the first two resonant modes 
(longitudinal and transverse mode), critical transitions to stationary, oscillating and 
chaotic regimes were predicted. Miles assumed that free-end edge conditions were 
satisfied a t  the vertical walls and introduced phenomenologically a constant 
damping coefficient to  account for dissipative losses. Nobili et a1. 1988 investigated 
the nonlinear behaviour of surface gravity waves in a low viscosity fluid (water) in 
a cylindrical tank and compared the experimental results with the predictions of the 
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Miles theory. A satisfactory agreement between theory and experiment was found for 
very high oscillation amplitudes where the displacement of the capillary line is much 
higher than the capillary length A, and the behaviour of the system tends to 
approach that predicted by the free-end edge condition. I n  particular. the phase 
diagram of the system agreed satisfactorily with the Miles predictions and the 
geometric shapes of the chaotic attractors were very close to the theoretical ones. On 
the contrary considerable discrepancies were found at smaller oscillation amplitudes 
where capillary effects cannot be disregarded and the damping rate cannot be 
assumed to be a constant coefficient. The experimental results discussed in this paper 
might explain the origin of these discrepancies. 

Our experiment concerns a well-defined fluid and a well-defined geometry of the 
system. Further experimental work should be devoted to systematically investigating 
the dynamics of surface waves by changing fluid, temperature, container and 
geometrical parameters. I n  particular the dependence of dynamic properties on the 
product Ic,  A, should be investigated in detail. 

This research was supported in part by MPI  and in part by CNR (Italy) 

Appendix 
Boundary condition (2.8) holds good if the contact angle is a linear function of the 

contact line velocity and no capillary hysteresis is present. The possible effect of the 
nonlinear behaviour of the dynamic contact angle on the damping of surface gravity 
waves was investigated theoretically some years also by Miles (1967) using a different 
theoretical approach. This different approach also provides a simple physical 
interpretation of the mechanism of capillary damping. Miles assumed that the range 
of possible static angles is zero, that is the contact line always slides on the vertical 
walls of the container. Furthermore, according to certain experimental results 
(Ablett 1923). he assumed that, depending on the value of the hydrodynamic 
velocity v at the walls of the container, two hfferent dynamic regimes of motion can 
occur' (i) for u < 21, the contact angle changes as a linear function of the 
hydrodynamic velocity v of the contact line; (ii) for v > 71, the contact angle becomes 
independent of the absolute value of velocity and changes from the minimum value 
8, for the receding fluid and the maximum value 8, for the advancing fluid. Therefore 
a Coulomb-like frictional force, 

F = T[co~8,(v)-c0~8,], (A 1) 
acts on the contact between the free surface of the fluid and the vertical walls. The 
presence of this frictional force acting on the contact line gives a simple physical 
interpretation of the capillary damping. 8, is the static contact angle which is 
assumed to have only one value and 8Jv) is the velocity-dependent contact angle. In  
the region w < v, Miles assumed the following linear. dependence 

cos 8 , ( ~ )  -COS 8, z - ~ O / V ~ ,  

cos8,(u)-cos8, % +& = -&J/1211, 

(A 2 )  

(A 3) 

whilst for w 9 w,, Miles assumed that 

and disregarded the fraction of time during the surface oscillation where the contact 
angle changes with velocity v (the signs + and - indicate receding and advancing 
fluid, respectively). Note that, for 8, = $c and B,(v)-B, @ 1, the linear dependence of 
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(A 2) coincides precisely with the Hocking assumption in (2.6). In  particular, if we 
compare (A2)  with (2.6) and we use ( 2 . 7 b ) ,  we find the formal equivalence 
h = v, /~wh, .  In  order to calculate the capillary damping due to the Coulomb-like 
frictional force (A l ) ,  Miles makes the implicit assumption that the velocity of the 
fluid at  the contact line is not affected by capillary contributions and, thus, it  
coincides with the 
according to (2.8), 
Miles obtained : 

velocity predicted by the free-end edge conditions. Note that, 
this assumption is correct only if h = v,/[uh, 9 1. For 2, < v, 

Using the equivalences h = vc/&d, ,  A, = (T/pg);, k, = 1.841/a and 

w1 = ( g k ,  tanh kl h);, 

(A 4a) can be written in the alternative form 

It is interesting to compare (A4b) with (2.11a). We find that (2.11a) approaches 
(A 46) for h B 1 .  In  general, (A 4b) overestimates the influence of capillary forces on 
the damping of surface waves. Indeed, (A 4a)  was obtained by assuming that the 
vertical displacement A ,  = v(a) of the contact line is that given by free-end boundary 
conditions, whilst the actual vertical displacement of the capillary line is always 
smaller than that predicted by the free-end edge condition (see (2.8)). In particular, 
for h = 0, r(a) vanishes and (2.11 a) predicts a zero damping coefficient, whilst (A 4b) 
predicts an infinite damping coefficient. 

In the case in which v B v, Miles obtained 

where w1 is the resonance angular frequency of the first mode given by (2 .2 ) ,  A ,  is the 
displacement of the fluid at  the vertical walls and ( is related to the experimental 
values of the receding and advancing contact angles by: 

6 = ~~COS~,-coSe,~. (A 6) 
By comparing (A 3) with (2.6) we find the formal equivalence h = Iv1/[wAC = Dlvl, 
where we have defined the coefficient D = l/.E$h,. This means that the nonlinear 
regime can be considered as a regime where the value of the capillary coefficient h is 
not constant during surface oscillation. As a rough approximation this regime can be 
described by substituting the actual velocity-dependent capillary coefficient by a 
constant eflective capillary coeficient : 

2DwA, heff = ( A )  = D(lvI) = ~, 
n 

where the symbol (Ivl) denotes the average value of the modulus of the velocity of 
the contact line over an oscillation period. If we use heff given by (A 7 )  instead of A 
in (2.11a) we find that (2.11a) becomes virtually coincident with (A 5) for h 4 1 (the 
numerical multiplicative coefficient becomes 0.385 instead of 0.398). According to 
our previous discussion concerning the linear case, we expect (A 5) to hold good only 
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if h = Aeff $ 1 ; we also know that a simple generalization of this equation to the case 
in which h < 1 can be obtained by using the linear formula in (2.11a) and (2 . l lb)  
where coefficient h is replaced by coefficient A,,, given in (A 7).  This new approach 
allows us to generalize the Miles damping rate in (A 5) to all values of the parameter 
h and to make new theoretical predictions as far as the natural frequency is 
concerned. 
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